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of Functions of Low-Order Continuity 

By Philip Rabinowitz 

The standard error term in the Gaussian integration rule with N points in- 
volves the derivative of order 2N of the integrand. This seems to indicate that 
such a rule is not efficient for integrating functions of low-order continuity, i.e. 
functions which have only a few derivatives in the entire interval of integration. 
However, Stroud and Secrest [3] have shown that Gaussian integration is efficient 
even in these cases. By applying Peano's theorem [1, p. 109] to functions of low- 
order continuity, they have tabulated error coefficients e,,N by which the error in 
integrating such functions can be bounded, provided that a bound Mm exists for 
the derivative of order m of the integrand. In this case, 

N 

(1) JEN(f)l = j f(x)dx - E wif(x) < em,NM. 

where If(m) (x) I < Mm in I = {-1 < x < 1 }. In the present paper, we use results 
from the theory of Chebyshev expansions to compute a different set of error co- 
efficients dm,N which provide sharper bounds on EN(f) in some cases. 

Let f(x) be continuous and of bounded variation in I. Then there is an ex- 
pansion of the form 

00, 
(2) f(x) = 'ao + aiTi(x) + a2T2(x) + = E a=T,(x) 

n=O 

which is uniformly convergent throughout I. Here, Tn(x) are the Chebyshev poly- 
nomials of the first kind and 

f2 f(X)Tn(X) dx (3) 2n = (d-x g ()cos nOdO 
7r | (1 _ X2)1/2d. gJ ()csnd 

where g(O) = f(cos 0). By integrating the right-hand integral in (3) successively by 
parts and applying the second mean-value theorem of the integral calculus after 
each integration, we get the following results of interest to us. These results as 
well as additional ones appear in Elliott [2]. 

A. Define Fl(x) = (1 - X2)112f'(X); if Fi(x) is of bounded variation in I with 
IFi(x) I < P1 and if Ci is the number of intervals in I, in each of which Fi(x) is 
monotonic, then 

~4) lanJ < 4C,P1/irn2 for n > 1. 

B. Define F2(x) = (1 -x2)f"(x) - xf'(x); if F2(x) is of bounded variation in 
I with IF2(x) < P2, if C2 is the number of intervals in I, in each of which F2(x) 
is monotonic, and if lim, >_i Fi(x) = 0, then 
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(5) ja,, ? 4C2P2/irn3 for n > 1. 

Let us now apply the operator EN to (2). We get 
00 I ~~~00 I0 

(6) EN(f) = EN%E a(Tn(X)) = a nEN(Tn) =E anEN(Tn) 
n= n=O n=21M 

since EN(Tn) = 0 for n < 2N. If now f(x) satisfies the conditions A, we get 

(7) IEN (f) I <4C1P1 IEN (Tn)I = djiNCiPi 
7X n=2N n 

where 

(8) dl,N- 4 ? E JEN(Tn)I 
W n=2N n 

converges since |EN(Tn) I ? 2 + 2/(n2 - 1). This bound holds since IT,,(x)I < 1 
in I and w i = 2 implying that j EDiti wiTn(x ) I _ 2 and since f11 Tn (x)dx 
= 2/(n2 - 1). If f(x) satisfies conditions B, we get similarly 

(9) IEN(f)I < d2,NC2P2 

where 

(10) d2,N = ? j EN(T3) 
irT n=2N n 

In Table 1, values of ei,N and di,N are given for i = 1, 2 and N = 4(3)16. We see 
that di,N/ei,N < 1 and that this ratio decreases with increasing N. Hence, in cases 
where CiT is not too much greater than Mi, (7) and (9) will provide sharper 
error bounds than (1), especially for large N. 

TABLE 1 

N el,N dl,N e2,N d2,N 

4 2.76(-1) 8.64(-2) 2.19(-2) 7.07(-3) 
7 1.65(-1) 3.13(-2) 7.63(-3) 1.50(-3) 

10 1.18(-1) 1.60(-2) 3.86(-3) 5.40(-4) 
13 9.15(-2) 9.68(-3) 2.33(-3) 2.54(-4) 
16 7.48(-2) 6.48(-3) 1.56(-3) 1.39(-4) 

Examples. 1. f(x) = IXI413. In this case, f"(x) is unbounded in I so that using 
(1), we find EN(f) ? ei,NM1. Taking N 16 and M1 = 4/3, we find E16(f) 
< 1.0(-1). Using (7) with C1 = 3 and P1 = .92, we find E16(f) < 1.8(-2). The 
actual error is 1.0(-3). For N = 4, the figures are 3.7(-1), 2.4(-1), and 2.2(-2), 
respectively. 

2. f(x) = JxJ813. In this case, EN(f) ? e2,NM2. With N = 16 and M2 = 40/9, 
we find E16(f) < 7.0(-3). Using (9) with C2 = 3 and P2 = 8/3, we find 
E,6(f) < 1.2(-3). The actual error is 3.5(-5). For N = 4, the figures are 9.8(-2), 
5.7(-2) and 5.1(-3), respectively. 
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3. f(x) = (x + 1)514. In this case also, f"(x) is unbounded in I so that EN(f) 
? elNM1. With N = 16 and M1 = (5/4)21" we find E16(f) < 1.1(-1). However, 
F2(X) satisfies conditions B so that we can use (9). With C2 = 2 and P2 = (5/4)21/4, 
we find E16(f) < 4.2(-4). The actual error is 8.9(-7). 

Remarks. 1. This method is not restricted to Gaussian rules but is applicable 
to any integration rule defined over I which integrates constants exactly. This in- 
cludes the Lobatto, Radau, Newton-Cotes, Romberg and Gauss-Jacobi rules. 

2. This method can be extended to cases where higher derivatives exist. Thus, 
Elliott [2] gives the estimate la1 ? 4C3P3/7rn4 where 

F3(x) (1- -2)12[(1-X2)f"'(X) -3xf"(x) - f'(x)] 
satisfies conditions similar to B. However, the expressions for Fi become very 
complicated with increasing i and it is not worth the effort to find Ci and Pi. 

3. Elliott also gives the estimate la,l < 4CoPo/irn where Fo(x) _ f(x). How- 
ever, it is probably not possible to use this method for functions with unbounded 
first derivatives. This is so since EnZ2N |EN(Tn) /n probably diverges. This as- 
sumption is based on the fact that for Gauss-Chebyshev integration, we can prove 
divergence. The Gauss-Chebyshev integration rule is of the form 

f1 f (x) N 

(11) (1 )/2 dX = -E f(xi) + EN(f) 

where 

(12) - cos-6 ' ir, i=1, * ,N. 

Since Jf 1 Tn(x)/(1 - x2)112dx = 0 for n > 1, it follows that EN(Tn) 
= (7r/N) , Tn(xi). Since Tn(x) = cos (n arecos x), we have Tn(xi) 
= cos ((2i - 1)nx/2N). Hence, for n = 2KN, K = 1, 2, * , EN(Tn) = -7r, 
from which it follows that n=2N IEN(Tn) I/n diverges. 

Conclusions. As Examples 1 and 2 indicate, error bounds (1), (7) and (9) may 
give rather good bounds on the integration error. On the other hand, Example 3 
shows that the bounds may overshoot the actual error by many orders of mag- 
nitude. Nevertheless, in the absence of further information, they are the best 
available for functions of low-order continuity. Since IFi(x)l < If'(x)j in I, (7) 
will be better than (1) for small values of C1. The situation with F2 is more com- 
plicated but usually P2 will be of the same order of magnitude as M2 so that (9) 
will give a better bound than (1) for small values of C2. In both cases, the critical 
value of Ci increases with N. In cases when the singularity is at an endpoint of 
I, our method may be very advantageous. As Example 3 shows, we can use (9) 
even when f"(x) is unbounded. More generally, f (')(x) may be unbounded while 
Fj+k(x) is well behaved, k = 0, 1, * .. But as mentioned above, the work involved 
in calculating Cj+k and Pi+k becomes prohibitive. On the other hand, (1) has the 
advantage of simplicity especially when compared with (9), and, of course, (1) is 
preferable when Ci is large. Hence there is room for both types of error bound. 
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An Explicit Sixth-Order Runge-Kutta Formula 

By H. A. Luther 

1. Introduction. The system of ordinary differential equations considered has 
the form 

(1) dy/dx = f(x, y), y(xo) = yo. 

Here y(x) and f(x, y) are vector-valued functions 

Y(X) = (yl(X), Y2(X), ' , Yam(X) ) 

f(X, Y) = (fl(X, Y), f2(X, Y), , * fm(X, Y)), 

so that we are dealing with m simultaneous first-order equations. 
For the fifth-order case, explicit Runge-Kutta formulas have been found whose 

remainder, while of order six when y is present in (1), does become of order seven 
when f is a function of x alone [3], [4]. This is due to the use of six functional sub- 
stitutions, a necessary feature when y occurs nontrivially [1]. 

A family of explicit sixth-order formulas has been described [1]. In this family 
is the formula given in the next section. Its remainder, while of order seven when 
y is present in (1), is of order eight when f is a function of x alone. Here again the 
possibility arises because seven functional substitutions are used, rather than six. 
Once more, this is a necessity [2]. 

For selected equations (those not strongly dependent on y) such formulas seem 
to lead to some increase in accuracy. 

2. Presentation of the Formula. For the interval [xn, xn + h], Lobatto quad- 
rature points leading to a remainder of order eight are 

xn, xn + h/2, x,, + (7 - (21)112)h/14, xn + (7 + (21)112)h/14, xn + h. 

A set of Runge-Kutta formulas related thereto is given below. They can be verified 
by substitution in the relations given by Butcher [1]. 

Expressed in a usual form they are 

Received December 28, 1966. Revised July 31, 1967. 


